Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Inorg Biochem ; 244: 112229, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37088047

RESUMEN

Since their initial discovery some 30 years ago, heme-based O2 sensors have been extensively studied. Among many other lessons, we have learned that they have adapted a wide variety of folds to bind heme for O2 sensing, and they can couple those sensory domains to transducer domains with many different activities. There is no question that we have learned a great deal about those systems by solving X-ray structures of the truncated pieces of larger multi-domain proteins. All of the studies have, for example, hinted at the importance of protein residues, which were further investigated, usually by site-directed mutagenesis of the full-length proteins together with physico-chemical measurements and enzymatic studies. The biochemistry has suggested that the sensing functions of heme-based O2 sensors involve not only the entire proteins but also, and quite often, their associated regulatory partners and targets. Here we critically examine the state of knowledge for some well-studied sensors and discuss outstanding questions regarding their structures. For the near future, we may foresee many large complexes with sensor proteins being solved by cryo-EM, to enhance our understanding of their mechanisms.


Asunto(s)
Hemo , Hemoproteínas , Hemo/química , Oxígeno/química , Hemoproteínas/química , Proteínas Bacterianas/química
2.
Methods Mol Biol ; 2648: 11-25, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37039982

RESUMEN

The discovery of an increasing number of proteins that function in the detoxification and sensing of gaseous ligands has renewed interest in hemeproteins. It is critical to measure the affinities of these proteins for ligands like O2, CO, and NO, know with confidence when a protein is fully saturated with a specific ligand, and be able to estimate how well a ligand will compete against other ligands for a specific protein. Below we describe how to obtain an intact O2-binding hemeprotein with a full complement of heme, how to evaluate the factors that can impact its affinity for O2, and how to determine accurately the equilibrium and kinetic parameters Kd, kon, and koff for O2 binding.


Asunto(s)
Hemoproteínas , Hemoproteínas/metabolismo , Ligandos , Oxígeno/metabolismo , Monóxido de Carbono/metabolismo , Gases
4.
J Inorg Biochem ; 238: 112052, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36334365

RESUMEN

The role of metal complexes on facing DNA has been a topic of major interest. However, metallonitrosyl compounds have been poorly investigated regarding their reactivities and interaction with DNA. A nitrosyl compound, cis-[Ru(bpy)2(SO3)(NO)](PF6)(A), showed a variety of promising biological activities catching our attention. Here, we carried out a series of studies involving the interaction and damage of DNA mediated by the metal complex A and its final product after NO release, cis-[Ru(bpy)2(SO3)(H2O](B). The fate of DNA with these metal complexes was investigated upon light or chemical stimuli using electrophoresis, electronic absorption spectroscopy, circular dichroism, size-exclusion resin, mass spectrometry, electron spin resonance (ESR) and viscometry. Since many biological disorders involve the production of oxidizing species, it is important to evaluate the reactivity of these compounds under such conditions as well. Indeed, the metal complex B exhibited important reactivity with H2O2 enabling DNA degradation, with detection of an unusual oxygenated intermediate. ESR spectroscopy detected mainly the DMPO-OOH adduct, which only emerges if H2O2 and O2 are present together. This result indicated HOO• as a key radical likely involved in DNA damage as supported by agarose gel electrophoresis. Notably, the nitrosyl ruthenium complex did not show evidence of direct DNA damage. However, its aqua product should be carefully considered as potentially harmful to DNA deserving further in vivo studies to better address any genotoxicity.


Asunto(s)
Complejos de Coordinación , Rutenio , Rutenio/química , Complejos de Coordinación/química , Peróxido de Hidrógeno , Compuestos de Rutenio/química , Óxido Nítrico/química , ADN
5.
Dalton Trans ; 49(45): 16498-16514, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33206073

RESUMEN

Complexes with general formula [RuCl(η6-p-cymene)(P-NR-P)]X (R = CH2Py (Py = pyridine) - [1a]+, CH2Ph (Ph = phenyl) - [1b]+, Ph - [1c] and p-tol (p-tol = p-tolyl) - [1d]+; X = PF6- or BF4-) were evaluated as cytotoxic agents against two cancer cell lines (HeLa and MDA-MB-231). All metal complexes are active in the range of concentrations tested (up to 100 µmol L-1). The IC50 (µmol L-1) values for the metal complexes are lower than that found for cisplatin. The activities are up to 6- and 15-fold higher than cisplatin for HeLa and MDA-MB-231 cancer cell lines, respectively. Studies of DNA binding and DNA cleavage were performed. DNA binding studies revealed a modest hypochromic shift in the metal complexes electronic spectra, indicating a weak interaction with Kb values in the range of 1.7 × 103-1.6 × 104. Although the cleavage tests revealed that in the dark DNA is not a biological target for these metal complexes, upon blue light irradiation they are activated causing DNA cleavage. Electrochemical studies showed the presence of two independent redox processes, one attributed to the oxidation process of Ru2+ → Ru3+ (EC process) and the other one to the reduction of Ru2+ → Ru1+, which is further reduced to Ru0 (ECE mechanism). In both processes, coupled chemical reactions were observed. DFT calculations were performed to support the electrochemical/chemical behavior of the complexes. The reactivity of complex [1b]BF4 with CH3CN was evaluated and two complexes were isolated [2b]BF4 and [3b]BF4. The complex mer-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4 ([2b]BF4) was isolated after refluxing the precursor [1b]BF4 in CH3CN. Isomerization of [2b]BF4 in CH3CN resulted in the formation of fac-[RuCl(CH3CN)3(P-NCH2Ph-P)]BF4. An attempt to isolate the fac-isomer by adding diethyl ether was unsuccessful, and the complex [3b]BF4 was observed as the major component. The complex [Ru2(µ-Cl3)(CH3CN)2(P-NCH2Ph-P)2]BF4 ([3b]BF4) proved to be very stable and can be obtained from both the mer- and the fac-isomers. The molecular structures of [1b]BF4 and [3b]BF4 were solved by single-crystal X-ray diffraction.


Asunto(s)
Aminas/química , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Cimenos/química , Fosfinas/química , Rutenio/química , Neoplasias de la Mama Triple Negativas/patología , Antineoplásicos/química , Antineoplásicos/farmacología , Teoría Funcional de la Densidad , Electroquímica , Células HeLa , Humanos
6.
J Biol Inorg Chem ; 25(5): 685-704, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32676771

RESUMEN

Mycobacterium tuberculosis (Mtb) has an old history as a human pathogen and still kills over one million people every year. One key feature of this bacterium is its dormancy: a phenomenon responsible for major changes in its metabolism and replication that have been associated with the need for a lengthy therapy for Mtb. This process is regulated by key heme-based sensors, particularly DosT and DevS (DosS), among other co-regulators, and also linked to nitrogen utilization (nitrate/nitrite) and stringent responses. In face of the current threat of tuberculosis, there is an urgent need to develop new therapeutic agents capable of targeting the dormant state, associated with the need for a lengthy therapy. Interestingly, many of those key proteins are indeed metallo-containing or metallo-dependent biomolecules, opening exciting bioinorganic opportunities. Here, we critically reviewed a series of small molecules targeting key proteins involved in these processes, including DosT/DevS/DevR, RegX3, MprA, MtrA, NarL, PknB, Rel, PPK, nitrate and nitrite reductases, GlnA1, aiming for new opportunities and alternative therapies. In the battle against Mycobacterium tuberculosis, new drug targets must be searched, in particular  those involved in dormancy. A series of exciting cases for drug development involving metallo-containing or metallo-dependent biomolecules are reviewed, opening great opportunities for the bioinorganic chemistry community.


Asunto(s)
Antituberculosos/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis/tratamiento farmacológico , Animales , Química Bioinorgánica , Humanos , Estructura Molecular , Tuberculosis/microbiología
7.
Dalton Trans ; 49(45): 15988-16003, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-32583835

RESUMEN

Medicinal inorganic chemists have provided many strategies to tackle a myriad of diseases, pushing forward the frontiers of pharmacology. As an example, the fight against tuberculosis (TB), an infectious bacterial disease, has led to the development of metal-based compounds as potential drugs. This disease remains a current health issue causing over 1.4 million of deaths per year. The emergence of multi- (MDR) and extensively-drug resistant (XDR) Mycobacterium tuberculosis (Mtb) strains along with a long dormancy process, place major challenges in developing new therapeutic compounds. Isoniazid is a front-line prodrug used against TB with appealing features for coordination chemists, which have been explored in a series of cases reported here. An isoniazid iron-based compound, called IQG-607, has caught our attention, whose in vitro and in vivo studies are advanced and thoroughly discussed, along with other metal complexes. Isoniazid is inactive against dormant Mtb, a hard to eliminate state of this bacillus, found in one-fourth of the world's population and directly implicated in the lengthy treatment of TB (ca. 6 months). Thus, our understanding of this phenomenon may lead to a rational design of new drugs. Along these lines, we describe how metals as targets can cross paths with metals used as selective therapeutics, where we mainly review heme-based sensors, DevS and DosT, as a key system in the Mtb dormancy process and a current drug target. Overall, we report new opportunities for bioinorganic chemists to tackle this longstanding and current threat.


Asunto(s)
Antibacterianos/farmacología , Metales/farmacología , Mycobacterium tuberculosis/efectos de los fármacos , Antibacterianos/química , Química Bioinorgánica , Metales/química
8.
J Biol Inorg Chem ; 25(3): 419-428, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32172453

RESUMEN

The cis-[Ru(bpy)2(Met)](PF6)2 complex, where Met = L-methionine and bpy = 2,2'-bipyridine, was prepared and fully characterized. This complex was subjected to blue and green light photolysis (453 and 505 nm, respectively) in aqueous solution, leading to the release of methionine and formation of the cis-[Ru(bpy)2(H2O)2]2+ ion. This latter photoproduct was shown to subsequently interact with DNA, while DNA photocleavage was noticed. In agreement with these reactivities, this compound exhibited an exciting antibacterial action, particularly against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, which was enhanced upon blue light irradiation. Altogether, these results showed that our strategy was successful in producing light-triggered DNA-binding agents with pharmacological potential and a likely blocking reagent for efficient peptide chemistry formation.


Asunto(s)
Antibacterianos/farmacología , Complejos de Coordinación/farmacología , Metionina/farmacología , Rutenio/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos , Animales , Antibacterianos/síntesis química , Antibacterianos/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , ADN/efectos de los fármacos , División del ADN , Luz , Masculino , Metionina/química , Pruebas de Sensibilidad Microbiana , Procesos Fotoquímicos , Rutenio/química , Salmón , Espermatozoides/química
9.
Adv Microb Physiol ; 75: 53-67, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31655742

RESUMEN

The Escherichia coli operon dosCP, also called yddV-yddU, co-expresses two heme proteins, DosC and DosP, both of which are direct oxygen sensors but paradoxically have opposite effects on the levels of the second messenger c-di-GMP. DosC is a diguanylate cyclase that synthesizes c-di-GMP from GTP, whereas DosP is a phosphodiesterase that linearizes c-di-GMP to pGpG. Both proteins are associated with the large degradosome enzyme complex that regulates many bacterial genes post-transcriptionally by processing or degrading the corresponding RNAs. Moreover, the c-di-GMP directly binds to PNPase, a key degradosome enzyme, and enhances its activity. This review combines biochemical, biophysical, and genetic findings on DosC and DosP, a task that has not been undertaken until now, partly because of the varied nomenclature. The DosC and DosP system is examined in the context of the current knowledge of degradosomes and considered as a possible prototype for the compartmentalization of sensing by E. coli.


Asunto(s)
GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Nucleotidiltransferasas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , GMP Cíclico/metabolismo , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Nucleotidiltransferasas/genética , Hidrolasas Diéster Fosfóricas/genética , Polirribonucleótido Nucleotidiltransferasa/genética , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Sistemas de Mensajero Secundario
10.
Dalton Trans ; 48(37): 14128-14137, 2019 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-31498349

RESUMEN

This work presents the results obtained for a thioether derivative of bipyridine, (E,Z)-1-(4'-methyl-[2,2'-bipyridine]-4-yl)-N-(4(methylthio)phenyl)methanimine (4-mbpy-Bz-SMe), and its copper complex [CuII(4-mbpy-Bz-SMe)2]2+. Electronic spectra acquired at 183 K of the cuprous complex [CuI(4-mbpy-Bz-SMe)2]+ generated in situ indicated the formation of the peroxodicopper compound {[CuII(4-mbpy-Bz-SMe)2]2(µ-O22-)}2+. A gold electrode modified with [CuII(4-mbpy-Bz-SMe)2]2+ (Au/[Cu]) was fully characterized by SERS spectroscopy, electrochemistry and impedance spectroscopy thus showing adsorption occurs through the sulfur atom of the 4-mbpy-Bz-SMe moieties. DNA cleavage assays showed the copper complex, in solution and adsorbed on gold, degrades DNA if reducing conditions are maintained, i.e. ascorbic acid (H2AA) in solution or applied potentials more negative than 0.12 V vs. Ag/AgCl (CuI form). The electron paramagnetic resonance (EPR) spectra obtained for the electrolyzed solution (Eapl = -0.2 V, no H2O2) and for the solution containing [CuII(4-mbpy-Bz-SMe)2]2+ and H2O2 showed hydroxyl radical, HO˙, generation had occurred. The cyclic voltammograms obtained with H2AA in solution at Au/[CuII(4-mbpy-Bz-SMe)2]2+ as the working electrode showed a one-electron reaction leading to the ascorbyl radical (HA˙), which was detected by EPR. The current assigned to the electrode oxidation of HA˙ to AA decreased with the addition of catalase, a scavenger of H2O2, meaning peroxide is involved in the mechanism.

11.
FEBS J ; 286(21): 4278-4293, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31254441

RESUMEN

Tuberculosis is one of the oldest known infectious diseases, responsible for millions of deaths annually around the world. The ability of Mycobacterium tuberculosis (Mtb) to enter into a dormant state has been considered integral to the success of this bacterium as a human pathogen. One of the key systems involved in regulating the entrance into dormancy is the differentially expressed in virulent strain sensor protein (DevS) [(dormancy survival sensor protein (DosS)]. However, the physiological signal for DevS has remained unclear since it was first shown to be a heme-based sensor with conflicting reports on whether it is a redox or an oxygen sensor. To address this question and provide a better understanding of the electronic properties of this protein, we present here, for the first time, a series of spectroelectrochemistry measurements of the full-length holo DevS in anaerobic conditions as well as bound to CO, NO, imidazole (Imz), cyanide, and O2 . An interesting feature of this protein is its ability to bind Imz even in the ferrous state, implying small-molecule analogues could be designed as potential regulators. Nonetheless, a midpoint potential (Em ) value of +10 mV [vs normal hydrogen electrode (NHE)] for DevS as measured under anaerobic conditions is much higher than the expected cytosolic potential for Mtb or even within stimulated macrophages (~ -270 mV vs NHE), indicating this sensor works in a reduced ferrous state. These data, along with the high oxygen affinity and very slow auto-oxidation rate of DevS, provides evidence that it is not a redox sensor. Overall, this study validates the biological function of DevS as an oxygen sensor directly involved in the dormancy/latency of Mtb.


Asunto(s)
Proteínas Bacterianas/genética , Técnicas Biosensibles , Mycobacterium tuberculosis/metabolismo , Protamina Quinasa/genética , Tuberculosis/metabolismo , Proteínas Bacterianas/química , Monóxido de Carbono/química , Cianuros/química , Hemo , Humanos , Imidazoles/química , Mycobacterium tuberculosis/patogenicidad , Óxido Nítrico/química , Oxidación-Reducción , Oxígeno/química , Protamina Quinasa/química , Tuberculosis/microbiología , Tuberculosis/patología
12.
Mol Pharm ; 16(7): 2912-2921, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31083895

RESUMEN

Silica-based nanoparticles have been developed as powerful platforms for drug delivery and might also prevent undesired side effects of drugs. Here, a fast method to synthesize positively charged mesoporous silica nanoparticles (ζ = 20 ± 0.5 mV, surface area = 678 m2 g-1, and 2.3 nm of porous size) was reported. This nanomaterial was employed to anchor sodium nitroprusside (SNP), a vasodilator drug with undesired cyanide release. A remarkable incorporation of 323.9 ± 7.55 µmol of SNP per gram of nanoparticle was achieved, and a series of studies of NO release were conducted, showing efficient release of NO along with major cyanide retention (ca. 64% bound to nanoparticle). Biological assays with mammalian cells showed only a slight drop in cell viability (13%) at the highest concentration (1000 µM), while SNP exhibited an LC50 of 228 µM. Moreover, pharmacological studies demonstrated similar efficacy for vasodilation and sGC-PKG-VASP pathway activation when compared to SNP alone. Altogether, this new SNP silica nanoparticle has great potential as an alternative for wider and safer use of SNP in medicine with lower cyanide toxicity.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Nanopartículas/química , Donantes de Óxido Nítrico/efectos adversos , Donantes de Óxido Nítrico/química , Nitroprusiato/efectos adversos , Nitroprusiato/química , Dióxido de Silicio/química , Animales , Aorta Torácica/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Liberación de Fármacos , Cobayas , Masculino , Óxido Nítrico/metabolismo , Porosidad , Arteria Pulmonar/efectos de los fármacos , Ratas , Ratas Wistar , Propiedades de Superficie , Células Vero
13.
J Biol Inorg Chem ; 24(2): 171-178, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30673877

RESUMEN

In this work, we have studied the effect of Crotalus basiliscus snake venom on the redox reaction of myoglobin (Mb), and by means of electrochemical techniques, we have shown that this reaction is undoubtedly affected following the interaction with the venom. Surface plasmon resonance, electrophoresis, UV-Vis, and circular dichroism showed that the interaction involves the attachment of some constituent of the venom to the protein, although not affecting its first and secondary structures. Mass spectra support this suggestion by showing the appearance of signals assigned to the Mb dimer and to a new species resulting from the interaction between Mb and the venom proteins. In addition, the mass spectra suggest the aromatic amino acids of myoglobin, mainly tryptophan and phenylalanine, are more exposed to the solvent medium upon the exposure to the venom solution. The results altogether indicate that the harmful effects of the venom of Crotalus basiliscus snake are likely connected to the blocking of the redox site of Mb.


Asunto(s)
Mioglobina/antagonistas & inhibidores , Venenos de Serpiente/farmacología , Animales , Crotalus , Técnicas Electroquímicas , Humanos , Mioglobina/metabolismo , Oxidación-Reducción , Venenos de Serpiente/química
14.
FEBS J ; 286(3): 479-494, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30570222

RESUMEN

A major challenge to the control and eventual eradication of Mycobacterium tuberculosis infection is this pathogen's prolonged dormancy. The heme-based oxygen sensor protein DevS (DosS) plays a key role in this phenomenon, because it is a major activator of the transcription factor DevR. When DevS is active, its histidine protein kinase region is ON and it phosphorylates and activates DevR, which can induce the transcription of the dormancy regulon genes. Here, we have investigated the mechanism by which the ligation of molecular oxygen to a heme-binding domain in DevS switches OFF its histidine protein kinase region. To shed light on the oligomerization states of this protein and possible protein-surfaces of interaction, we used analytical gel filtration, together with dynamic light scattering, fluorescence spectroscopy and chemical crosslinking. We found that DevS exists as three major species: an octamer, a tetramer and a dimer. These three states were observed for the concentration range between 0.5 and 20 µm DevS, but not below 0.1 µm. Levels of DevS in M. tuberculosis are expected to range from 5 to 26 µm. When this histidine protein kinase was OFF, the DevS was mainly tetrameric and dimeric; by contrast, when the kinase was ON, the protein was predominantly octameric. The changes in quaternary structure were rapid upon binding to the physiological signal. This finding represents a novel strategy for switching the activity of a two-component heme-based sensor. An enhanced understanding of this process might potentially lead to the design of novel regulatory agents that target the multimer interfaces for treatment of latent tuberculosis.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Hemo/química , Mycobacterium tuberculosis/efectos de los fármacos , Oxígeno/farmacología , Protamina Quinasa/química , Proteínas Quinasas/genética , Proteínas Bacterianas/metabolismo , Cromatografía en Gel , Clonación Molecular , Proteínas de Unión al ADN , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Hemo/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Tuberculosis Latente/microbiología , Tuberculosis Latente/patología , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/aislamiento & purificación , Mycobacterium tuberculosis/metabolismo , Oxígeno/química , Oxígeno/metabolismo , Fosforilación , Protamina Quinasa/genética , Protamina Quinasa/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Multimerización de Proteína , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Regulón , Transducción de Señal , Espectrometría de Fluorescencia , Transcripción Genética/efectos de los fármacos
16.
Front Microbiol ; 9: 880, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29765372

RESUMEN

The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.

17.
J Inorg Biochem ; 182: 83-91, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29452883

RESUMEN

Nitric oxide has been involved in many key biological processes such as vasodilation, platelet aggregation, apoptosis, memory function, and this has drawn attention to the development of exogenous NO donors. Metallonitrosyl complexes are an important class of these compounds. Here, two new ruthenium nitrosyl complexes containing a thiocarbonyl ligand, with the formula cis-[Ru(phen)2(L)(NO)](PF6)3 (phen = phenantroline, L = thiourea or thiobenzamide), were synthesized and characterized by electronic spectroscopy, FTIR, NMR, mass spectrometry and voltammetric techniques. Theoretical calculations using Density Functional Theory (DFT) and Time-dependent Density Functional Theory (TD-DFT) were also used and further supported the characterizations of these complexes. An efficient release of nitric oxide by blue light was validated using a NO/HNO probe: 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, known as cPTIO. Interestingly, the complex containing thiourea cleaved DNA even in the dark, while both complexes showed great DNA photocleavage activity in blue light. This process might work mainly through NO and hydroxyl radical production. Additionally, these complexes showed promising vasodilator activity, whose mechanism of action was investigated using N-Nitro-l-arginine methyl ester hydrochloride (L-NAME) and 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) and compared to sodium nitroprusside. Both compounds were indeed NO-mediated heme-dependent activators of soluble guanylate cyclase. Additionally, they did not show any significant cytotoxicity against cancer cell lines U87 and GBM02. Altogether, these results supported both complexes having potential pharmacological applications that deserve further studies.


Asunto(s)
División del ADN/efectos de la radiación , Daño del ADN/efectos de los fármacos , Daño del ADN/efectos de la radiación , Luz , Compuestos de Rutenio/química , Compuestos de Rutenio/farmacología , Vasodilatadores/química , Vasodilatadores/farmacología , Estructura Molecular , Óxido Nítrico/química , Rutenio/química
18.
RSC Adv ; 8(30): 16873-16886, 2018 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-35540529

RESUMEN

Vanillin (vanH) is the major component of vanilla and one of the most widely used flavoring agents. In this work the complex [Cu(phen)(van)2] was prepared and characterized by structural (X-ray), spectroscopic (IR, UV-Vis, EPR) and electrochemical techniques. This compound showed an octahedral geometry with an unusual arrangement of the vanillin ligands, where the methoxy groups of the vanillinate ions are coordinated opposite to each other. The compound promoted DNA cleavage in the presence of glutathione (GSH) and H2O2. At 40 µmol L-1 of complex with GSH (10 mmol L-1), there is a complete cleavage of DNA to nicked form II, while only at 10 µmol L-1 of this complex with H2O2 (1 mmol L-1) an extensive cleavage leading to form III took place. Additionally, we have evidences of superoxide generation upon reaction with GSH. Therefore, DNA fragmentation occurs likely through an oxidative pathway. MTT assays indicated that the complex is highly cytotoxic against three distinct cell lines: B16-F10 (IC50 = 3.39 ± 0.61 µmol L-1), HUH-7 (IC50 = 4.22 ± 0.31 µmol L-1) and 786-0 (IC50 = 10.38 ± 0.91 µmol L-1). Flow cytometry studies conducted with 786-0 cell line indicated cell death might occur by apoptosis. Cell cycle progression evaluated at 5 and 10 µmol L-1 resulted in a clear increase of 786-0 cells at G1 phase and depletion of G2/M, while higher doses showed an expressive increase of sub-G1 phase. Altogether, these results pointed out to a promising biological activity and potential as an anti-cancer agent.

19.
FEBS J ; 284(22): 3954-3967, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28977726

RESUMEN

Mycobacterium tuberculosis strongly relies on a latency, or nonreplicating persistence, to escape a human host's immune system. The DevR (DosR), DevS (DosS), and DosT proteins are key components of this process. Like the rhizobial FixL oxygen sensor, DevS and DosT are histidine protein kinases with a heme-binding domain. Like the FixJ partner and substrate of FixL, DevR is a classical response regulator of the two-component class. When activated by DevS or DosT during hypoxia in vivo, DevR induces a dormancy regulon of more than 40 genes. To investigate the contributions of DevS, DosT, and target DNA to the phosphorylation of DevR, we developed an in vitro assay in which the full-length, sensing, DevS and DosT proteins were used to phosphorylate DevR with ATP, in the presence of target DNAs that were introduced as oligonucleotides linked to magnetic nanoparticles. We found that the DevR phosphorylations proceeded only for the deoxy states of the sensors. The reaction was strongly inhibited by O2 , but not CO or NO. The production of phospho-DevR was enhanced sixfold by target consensus DNA or acr-DNA. The phospho-DevR bound tightly to that DNA (Kd ~ 0.8 nm toward acr-DNA), and it was only slightly displaced by a 200-fold excess of unphosphorylated DevR or of a truncated DevR with only a DNA-binding domain. To our knowledge, this represents the first in vitro study of the ligand regulation of DevR phosphorylation by full-length DevS and DosT, and demonstration of a positive effect of DNA on this reaction.


Asunto(s)
Proteínas Bacterianas/metabolismo , ADN/metabolismo , Mycobacterium tuberculosis/metabolismo , Oxígeno/metabolismo , Protamina Quinasa/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Bacterianas/química , ADN/química , Proteínas de Unión al ADN , Regulación Bacteriana de la Expresión Génica , Humanos , Nanopartículas de Magnetita/química , Mycobacterium tuberculosis/crecimiento & desarrollo , Fosforilación , Protamina Quinasa/química , Proteínas Quinasas/química , Regulón
20.
Adv Microb Physiol ; 71: 235-257, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28760323

RESUMEN

Haem-based sensors have emerged during the last 15 years as being a large family of proteins that occur in all kingdoms of life. These sensors are responsible mainly for detecting binding of O2, CO and NO and reporting the ligation status to an output domain with an enzymatic or macromolecule-binding property. A myriad of biological functions have been associated with these sensors, which are involved in vasodilation, bacterial symbiosis, chemotaxis and biofilm formation, among others. Here, we critically review several bacterial systems for O2 sensing that are extensively studied in many respects, focusing on the lessons that are important to advance the field.


Asunto(s)
Hemo/fisiología , Oxígeno/metabolismo , Transducción de Señal/fisiología , Hemo/metabolismo , Mycobacterium tuberculosis/metabolismo , Mycobacterium tuberculosis/fisiología , Rhizobium/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...